Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

A monoclinic polymorph of $\mathrm{KY}\left(\mathrm{PO}_{3}\right)_{\mathbf{4}}$

Karima Horchani-Naifer, Anis Jouini and Mokhtar Férid*

Unité de Recherches de Matériaux de Terres Rares, Centre National de Recherches en Sciences des Matériaux, BP 95 Hammam-Lif 2050, Tunisia
Correspondence e-mail: mokhtar.ferid@inrst.rnrt.tn

Received 30 April 2008; accepted 9 May 2008
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{P}-\mathrm{O})=0.006 \AA$; R factor $=0.048 ; w R$ factor $=0.138$; data-to-parameter ratio $=12.2$.

The title compound, potassium yttrium polyphosphate, $\mathrm{KY}\left(\mathrm{PO}_{3}\right)_{4}$, was synthesized using the flux method. The atomic arrangement consists of an infinite long-chain polyphosphate organization. Chains, with a period of four PO_{4} tetrahedra, run along the a-axis direction. Two other polymorphs of this phosphate are known, in space groups $P 21 / n$ and $C 2 / c$.

Related literature

For related structures, see: Durif (1995); Hamady et al. (1995); Hong et al. (1975); Malinowski (1990); Malinowski et al. (1988); Palkina et al. (1977). For earlier work on KY $\left(\mathrm{PO}_{3}\right)_{4}$, see: Jouini et al. (2003). For related literature, see: Sun et al. (2004).

Experimental

Crystal data

$\mathrm{KY}\left(\mathrm{PO}_{3}\right)_{4}$
$M_{r}=443.89$
Monoclinic, $P 2_{\text {b }}$
$a=7.2244$ (3) A
$b=8.2825$ (3) \AA
$c=7.854$ (4) \AA
$\beta=91.735(3)^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.321, T_{\text {max }}=0.376$
3651 measured reflections
$V=469.7(2) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=7.40 \mathrm{~mm}^{-1}$
$T=298$ (2) K
$0.16 \times 0.14 \times 0.13 \mathrm{~mm}$

2011 independent reflections
1904 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.081$
2 standard reflections every 150 reflections intensity decay: 2%

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.138$
$S=1.13$
2011 reflections
165 parameters
1 restraint
$\Delta \rho_{\text {max }}=1.19 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-2.67 \mathrm{e}^{\AA^{-3}}$
Absolute structure: Flack (1983), with 867 Friedel pairs
Flack parameter: 0.002 (9)

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček \& Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.

This work was supported by the Ministry of Higher Education, Scientific Research and Technology of Tunisia.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2073).

References

Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, University of Bonn, Germany.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York: Plenum Press.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hamady, A., Jouini, T. \& Driss, A. (1995). Acta Cryst. C51, 1970-1972.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Hong, H. Y.-P. (1975). Mater. Res. Bull. 10, 1105-1110.
Jouini, A., Férid, M. \& Trabelsi-Ayadi, M. (2003). Thermochim. Acta, 400, 199204.

Macíček, J. \& Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
Malinowski, M. (1990). J. Phys. Chem. Solids, 51, 59-64.
Malinowski, M., Jackier, B., Boulon, G. \& Wolinski, W. (1988). J. Lumin. 39, 301-311.
Palkina, K. K., Saiffuddinov, V. Z., Kuznetsov, V. G. \& Chudinova, N. N. (1977). Dokl. Akad. Nauk SSSR, 237, 837-839.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sun, T., Shen, G., Wang, X., Wang, R., Wei, J. \& Shen, D. (2004). Acta Cryst. E60, i28-i30.

supplementary materials

A monoclinic polymorph of $\mathrm{KY}\left(\mathrm{PO}_{\mathbf{3}}\right)_{\mathbf{4}}$

K. Horchani-Naifer, A. Jouini and M. Férid

Comment

Yttrium condensed phosphates have been considered as a crystal hosts for optical materials when doped with lanthanides, due to there high-temperature chemical stability, high yield intrinsic fluorescence and minimal trapping of excitation, rendering them attractive materials for investigations of the energy transfer phenomena and fluorescence quenching(Malinowski, 1990; Malinowski et al., 1988). The literature dealing with these compounds was rather confusing for some time, between cyclic or chain condensed phosphates, but it is currently well established that the $M^{\mathrm{I}} \mathrm{Y}\left(\mathrm{PO}_{3}\right)_{4}$ compounds are polyphosphates with infinite chain and $M^{\mathrm{I}} \mathrm{YP}_{4} \mathrm{O}_{12}$ are cyclotetraphosphates (with $M^{\mathrm{I}}=$ monovalent cation) (Durif, 1995). In our laboratory we have synthesized the potassium and yttrium polyphosphates to establish the solid-liquid equilibrium diagram of the $\mathrm{KPO}_{3}-\mathrm{Y}\left(\mathrm{PO}_{3}\right)_{3}$ system (Jouini et al., 2003). Three allotropic phases with the space groups $P 2_{1}, P 2_{1} / n$ and $C 2 / c$ were isolated and characterized. The three monoclinic allotropes are: i) $\mathrm{KY}\left(\mathrm{PO}_{3}\right)_{4}$ polyphosphate with the $P 2_{1}$ space group, isostructural with $\mathrm{KNd}\left(\mathrm{PO}_{3}\right)_{4}$ (Hong, 1975). ii) $\mathrm{KY}\left(\mathrm{PO}_{3}\right)_{4}$ polyphosphate belongs to $P 2_{1} / n$ space group, and is isostructural with $\operatorname{TlNd}\left(\mathrm{PO}_{3}\right)_{4}$ (Palkina et al., 1977). In these two forms the phosphate anion has a chain structure. iii) The third allotropic form is $\mathrm{KYP}_{4} \mathrm{O}_{12}$ which crystallizes in the $C 2 / c$ space group, only this structure was investigated (Hamady, 1995). This paper is devoted to the crystal structure of the first polymorph $\mathrm{KY}\left(\mathrm{PO}_{3}\right)_{4}\left(P 2_{1}\right)$. The atomic arrangement of this srtucture is characterized by a three-dimensional framework built of $\left(\mathrm{PO}_{3}\right)_{\mathrm{n}}$ chains that are formed by corner-sharing of PO_{4} tetrahedra (Figs 1,2). The chains run along the a axis, with four PO_{4} tetrahedra in a repeating unit. $\mathrm{KY}\left(\mathrm{PO}_{3}\right)_{4}$ is isostructural with $\mathrm{KNd}\left(\mathrm{PO}_{3}\right)_{4}$, but not with $\mathrm{CsLa}\left(\mathrm{PO}_{3}\right)_{4}$ (Sun et al., 2004) although they belong to the same space group, $P 2_{1}$. In the latter, the infinite screw $\left(\mathrm{PO}_{3}\right)_{\mathrm{n}}$ chains are repeated after every eighth PO_{4} group along the b axis. The chains (two per unit cell) are joined to each other by YO_{8} polyhedra (Fig 3.), no O atom is shared with the adjacent YO_{8} polyhedra. The K atoms are in an eightfold coordination.

Experimental

Single crystal of $\mathrm{KY}\left(\mathrm{PO}_{3}\right)_{4}$ was prepared by flux method. Homogeneous solution of potassium carbonate $\mathrm{K}_{2} \mathrm{CO}_{3}(6 \mathrm{~g})$ and yttrium oxide $\mathrm{Y}_{2} \mathrm{O}_{3}(0.5 \mathrm{~g})$ containing a large excess of orthophosphoric acid $\mathrm{H}_{3} \mathrm{PO}_{4}(16 \mathrm{ml}, 85 \%$ concentration $)$ was heated in a vitreous carbon crucible at 473 K for 1 day. Then the temperature of the furnace was slowly raised to the predermined temperature in the range of 573-623 K for 7 days. Crystals were separated from the excess phosphoric acid by washing the product in boiling water.

Refinement

The highest peak and the deepest hole are located $0.09 \AA$ and $0.85 \AA$ from Y.

supplementary materials

Figures

Potassium yttrium polyphosphate

Crystal data

$\mathrm{KY}\left(\mathrm{PO}_{3}\right)_{4}$
$M_{r}=443.89$
Monoclinic, $P 2_{1}$
Hall symbol: P 2yb
$a=7.2244$ (3) \AA
$b=8.2825$ (3) \AA
$c=7.854$ (4) \AA
$\beta=91.735(3)^{\circ}$
$V=469.7(2) \AA^{3}$
$Z=2$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=298(2) \mathrm{K}$
$\omega / 2 \theta$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.321, T_{\text {max }}=0.376$
3651 measured reflections
$F_{000}=428$
$D_{\mathrm{x}}=3.138 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 760 K
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=2.6-27.5^{\circ}$
$\mu=7.40 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Prism, colourless
$0.16 \times 0.14 \times 0.13 \mathrm{~mm}$
$R_{\text {int }}=0.081$
$\theta_{\text {max }}=27.5^{\circ}$
$\theta_{\text {min }}=2.6^{\circ}$
$h=-7 \rightarrow 9$
$k=-8 \rightarrow 10$
$l=-8 \rightarrow 10$
2 standard reflections
every 150 reflections

2011 independent reflections
1904 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.138$
$S=1.13$
2011 reflections
165 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
intensity decay: 2\%

Secondary atom site location: difference Fourier map

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0908 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=1.19 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-2.67$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.065 (7)
Absolute structure: Flack (1983), with 867 Friedel pairs
Flack parameter: 0.002 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Y	$0.23704(8)$	$0.75897(9)$	$0.24245(8)$	$0.0086(3)$
K	$0.2703(3)$	$0.4566(3)$	$-0.2812(3)$	$0.0303(6)$
P1	$0.4367(3)$	$0.3830(2)$	$0.0947(3)$	$0.0091(4)$
P2	$0.0994(3)$	$0.1755(2)$	$0.0978(2)$	$0.0086(4)$
P3	$-0.0018(3)$	$0.4085(2)$	$0.3809(2)$	$0.0088(4)$
P4	$0.6161(3)$	$0.5114(2)$	$0.3992(2)$	$0.0084(4)$
O1	$0.3212(8)$	$0.5292(7)$	$0.0721(7)$	$0.0140(12)$
O2	$0.5736(8)$	$0.3558(8)$	$-0.0387(8)$	$0.0184(13)$
O3	$0.3126(7)$	$0.2261(7)$	$0.1093(8)$	$0.0169(13)$
O4	$0.5360(8)$	$0.3706(7)$	$0.2789(7)$	$0.0139(12)$
O5	$0.0239(8)$	$0.2062(7)$	$-0.0776(7)$	$0.0150(12)$
O6	$0.0880(8)$	$0.0105(7)$	$0.1732(7)$	$0.0163(12)$
O7	$-0.0076(8)$	$0.2991(7)$	$0.2159(8)$	$0.0189(13)$
O8	$0.1660(7)$	$0.5100(7)$	$0.3846(7)$	$0.0124(11)$

O9	$-0.0337(8)$	$0.3109(7)$	$0.5348(8)$	$0.0167(12)$
O10	$-0.1755(8)$	$0.5225(7)$	$0.3407(7)$	$0.0121(11)$
O11	$0.5258(8)$	$0.6648(7)$	$0.3514(7)$	$0.0138(11)$
O12	$0.6118(7)$	$0.4535(7)$	$0.5773(7)$	$0.0121(11)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Y	$0.0092(4)$	$0.0103(4)$	$0.0067(4)$	$-0.0004(3)$	$0.0048(2)$	$-0.0001(2)$
K	$0.0180(10)$	$0.0601(16)$	$0.0129(8)$	$0.0108(9)$	$0.0031(7)$	$-0.0019(10)$
P1	$0.0100(9)$	$0.0098(10)$	$0.0080(9)$	$-0.0003(7)$	$0.0044(7)$	$-0.0004(6)$
P2	$0.0084(9)$	$0.0095(9)$	$0.0082(9)$	$-0.0008(6)$	$0.0034(7)$	$-0.0004(7)$
P3	$0.0090(9)$	$0.0107(10)$	$0.0070(9)$	$-0.0009(7)$	$0.0055(7)$	$0.0003(7)$
P4	$0.0086(9)$	$0.0088(9)$	$0.0081(8)$	$0.0003(6)$	$0.0032(7)$	$0.0001(6)$
O1	$0.018(3)$	$0.012(3)$	$0.012(3)$	$0.001(2)$	$0.003(2)$	$-0.001(2)$
O2	$0.021(3)$	$0.021(3)$	$0.014(3)$	$0.007(2)$	$0.011(2)$	$-0.001(2)$
O3	$0.010(3)$	$0.018(3)$	$0.023(3)$	$-0.003(2)$	$0.000(2)$	$-0.004(2)$
O4	$0.016(3)$	$0.015(3)$	$0.011(3)$	$0.001(2)$	$-0.002(2)$	$0.000(2)$
O5	$0.014(3)$	$0.020(3)$	$0.011(3)$	$0.004(2)$	$0.002(2)$	$-0.003(2)$
O6	$0.019(3)$	$0.011(3)$	$0.019(3)$	$0.003(2)$	$-0.002(2)$	$0.004(2)$
O7	$0.018(3)$	$0.020(3)$	$0.019(3)$	$0.003(2)$	$0.008(2)$	$-0.010(2)$
O8	$0.008(3)$	$0.016(3)$	$0.013(3)$	$-0.004(2)$	$0.004(2)$	$0.004(2)$
O9	$0.017(3)$	$0.019(3)$	$0.015(3)$	$0.003(2)$	$0.010(2)$	$0.007(2)$
O10	$0.011(3)$	$0.015(3)$	$0.011(3)$	$-0.002(2)$	$0.005(2)$	$0.003(2)$
O11	$0.012(3)$	$0.015(3)$	$0.014(3)$	$0.003(2)$	$0.000(2)$	$0.002(2)$
O12	$0.010(2)$	$0.019(3)$	$0.008(2)$	$0.005(2)$	$0.002(2)$	$0.000(2)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Y}-\mathrm{O} 2^{\mathrm{i}}$	$2.282(6)$
$\mathrm{Y}-\mathrm{O} 5^{\mathrm{ii}}$	$2.296(6)$
$\mathrm{Y}-\mathrm{O} 9^{\mathrm{iii}}$	$2.358(6)$
$\mathrm{Y}-\mathrm{O} 11$	$2.363(5)$
$\mathrm{Y}-\mathrm{O} 12^{\text {iv }}$	$2.387(5)$
$\mathrm{Y}-\mathrm{O} 6^{\mathrm{v}}$	$2.400(6)$
$\mathrm{Y}-\mathrm{O} 8$	$2.408(6)$
$\mathrm{Y}-\mathrm{O} 1$	$2.415(6)$
$\mathrm{Y}-\mathrm{K}^{\mathrm{i}}$	$3.921(2)$
$\mathrm{K}-\mathrm{O} 12^{\mathrm{vi}}$	$2.736(6)$
$\mathrm{K}-\mathrm{O} 8^{\text {vi }}$	$2.744(6)$
$\mathrm{K}-\mathrm{O} 6^{\mathrm{ii}}$	$2.785(6)$
$\mathrm{K}-\mathrm{O} 1$	$2.852(6)$
$\mathrm{K}-\mathrm{O} 9^{\text {vi }}$	$2.859(7)$
$\mathrm{K}-\mathrm{O} 11^{\mathrm{vii}}$	$2.892(7)$
$\mathrm{K}-\mathrm{O} 2$	$2.979(6)$
$\mathrm{K}-\mathrm{O} 5$	$3.194(6)$

$\mathrm{P} 1-\mathrm{O} 1$	$1.479(6)$
$\mathrm{P} 1-\mathrm{O} 2$	$1.480(6)$
$\mathrm{P} 1-\mathrm{O} 3$	$1.585(6)$
$\mathrm{P} 1-\mathrm{O} 4$	$1.599(5)$
$\mathrm{P} 2-\mathrm{O} 5$	$1.488(6)$
$\mathrm{P} 2-\mathrm{O} 6$	$1.492(6)$
$\mathrm{P} 2-\mathrm{O} 3$	$1.597(6)$
$\mathrm{P} 2-\mathrm{O} 7$	$1.597(6)$
$\mathrm{P} 3-\mathrm{O} 8$	$1.474(6)$
$\mathrm{P} 3-\mathrm{O} 9$	$1.478(6)$
$\mathrm{P} 3-\mathrm{O} 7$	$1.581(6)$
$\mathrm{P} 3-\mathrm{O} 10$	$1.594(6)$
$\mathrm{P} 4-\mathrm{O} 11$	$1.472(6)$
$\mathrm{P} 4-\mathrm{O} 12$	$1.480(6)$
$\mathrm{P} 4-\mathrm{O} 10^{\text {viii }}$	$1.590(6)$
$\mathrm{P} 4-\mathrm{O} 4$	$1.598(6)$

sup-4

$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Y}-\mathrm{O} 5^{\mathrm{ii}}$
$\mathrm{O} 2-\mathrm{Y}-\mathrm{O} 9^{\text {iii }}$
$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Y}-\mathrm{O} 9^{\text {iii }}$
$\mathrm{O} 2 \mathrm{i}-\mathrm{Y}-\mathrm{O} 11$
O5 ${ }^{\text {ii }} \mathrm{C}$
O9 ${ }^{\text {iiii- }} \mathrm{Y}-\mathrm{O} 11$
$\mathrm{O} 2 \mathrm{i}-\mathrm{Y}-\mathrm{O} 12^{\mathrm{iv}}$
$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Y}-\mathrm{O} 12{ }^{\text {iv }}$
$\mathrm{O} 9^{\text {iiii }}-\mathrm{Y}-\mathrm{O} 12^{\text {iv }}$
$\mathrm{O} 11-\mathrm{Y}-\mathrm{O} 12^{\text {iv }}$
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Y}-\mathrm{O}^{\mathrm{V}}$
$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Y}-\mathrm{O} 6^{\text {V }}$
O9 $9^{\text {iii }}-\mathrm{Y}-\mathrm{O}^{\text {V }}$
$\mathrm{O} 11-\mathrm{Y}-\mathrm{O} 6^{\mathrm{V}}$
$\mathrm{O} 12^{\text {iv }}-\mathrm{Y}-\mathrm{O}^{\text {v }}$
$\mathrm{O} 2 \mathrm{i}-\mathrm{Y}-\mathrm{O} 8$
$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Y}-\mathrm{O} 8$
$\mathrm{O} 9^{\text {iii }}-\mathrm{Y}-\mathrm{O} 8$
O11-Y-O8
$\mathrm{O} 12{ }^{\text {iv }}-\mathrm{Y}-\mathrm{O} 8$
$\mathrm{O} 6^{\mathrm{v}}-\mathrm{Y}-\mathrm{O} 8$
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Y}-\mathrm{O} 1$
$\mathrm{O} 5^{\mathrm{ii}}-\mathrm{Y}-\mathrm{O} 1$
$\mathrm{O} 9^{\text {iii }}-\mathrm{Y}-\mathrm{O} 1$
$\mathrm{O} 11-\mathrm{Y}-\mathrm{O} 1$
$\mathrm{O} 12^{\mathrm{iv}}-\mathrm{Y}-\mathrm{O} 1$
$\mathrm{O} 6^{\mathrm{v}}-\mathrm{Y}-\mathrm{O} 1$
O8-Y-O1
$\mathrm{O} 12^{\text {vi }}-\mathrm{K}-\mathrm{O} 8^{\text {vi }}$
$\mathrm{O} 12^{\mathrm{vi}}-\mathrm{K}-\mathrm{O} 6^{\mathrm{ii}}$
$\mathrm{O} 8^{\mathrm{vi}}-\mathrm{K}-\mathrm{O} 6^{\text {ii }}$
$\mathrm{O} 12{ }^{\text {vi }}-\mathrm{K}-\mathrm{O} 1$
$\mathrm{O} 8^{\mathrm{vi}}-\mathrm{K}-\mathrm{O} 1$
O6 ${ }^{\text {ii }}-\mathrm{K}-\mathrm{O} 1$
$\mathrm{O} 12{ }^{\text {vi }}-\mathrm{K}-\mathrm{O} 9^{\text {vi }}$
$\mathrm{O} 8{ }^{\text {vi }}-\mathrm{K}-\mathrm{O} 9{ }^{\text {vi }}$
O6 ${ }^{\text {ii }}-\mathrm{K}-\mathrm{O} 9^{\text {vi }}$
O1-K-O9 ${ }^{\text {vi }}$
$\mathrm{O} 12^{\text {vi }}-\mathrm{K}-\mathrm{O} 11^{\text {vii }}$
$\mathrm{O} 8^{\text {vi }}-\mathrm{K}-\mathrm{O} 11^{\text {vii }}$
O6 ${ }^{\text {ii }}-\mathrm{K}-\mathrm{O} 11^{\text {vii }}$

99.8 (2)
148.9 (2)
86.2 (2)
80.1 (2)
147.3 (2)
110.8 (2)
84.6 (2)
144.7 (2)
73.79 (19)
67.98 (19)
79.1 (2)
71.5 (2)
74.0 (2)
138.9 (2)
75.09 (19)
140.1 (2)
85.16 (19)
70.5 (2)
75.39 (19)
113.77 (19)
138.4 (2)
73.9 (2)
75.7 (2)
136.7 (2)
72.9 (2)
137.92 (19)
132.6 (2)
69.1 (2)
80.69 (17)
169.5 (2)
91.99 (17)
107.81 (17)
156.9 (2)
76.31 (17)
118.63 (18)
53.15 (16)
60.95 (18)
130.90 (19)
56.23 (17)
94.54 (19)
132.5 (2)

$\mathrm{O} 9^{\text {vi }}-\mathrm{K}-\mathrm{O} 11^{\text {vii }}$	86.49 (17)
$\mathrm{O} 12^{\mathrm{vi}}-\mathrm{K}-\mathrm{O} 2$	66.57 (16)
$\mathrm{O} 8^{\mathrm{vi}}-\mathrm{K}-\mathrm{O} 2$	146.32 (18)
$\mathrm{O} 6^{\mathrm{ii}}-\mathrm{K}-\mathrm{O} 2$	121.50 (18)
$\mathrm{O} 1-\mathrm{K}-\mathrm{O} 2$	50.68 (17)
$\mathrm{O} 9^{\mathrm{vi}}-\mathrm{K}-\mathrm{O} 2$	138.0 (2)
$\mathrm{O} 11^{\mathrm{vii}}-\mathrm{K}-\mathrm{O} 2$	61.22 (17)
$\mathrm{O} 12{ }^{\text {vi }}-\mathrm{K}-\mathrm{O} 5$	136.07 (19)
O8 ${ }^{\text {vi }}-\mathrm{K}-\mathrm{O} 5$	116.25 (17)
O6 ${ }^{\text {ii }}-\mathrm{K}-\mathrm{O} 5$	54.12 (17)
O1-K-O5	72.96 (18)
O9 ${ }^{\text {vi }}-\mathrm{K}-\mathrm{O} 5$	63.10 (17)
O11 ${ }^{\text {vii }-\mathrm{K}-\mathrm{O} 5}$	81.22 (17)
$\mathrm{O} 2-\mathrm{K}-\mathrm{O} 5$	84.71 (17)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 2$	115.3 (4)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 3$	111.2 (3)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 3$	108.5 (4)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{O} 4$	113.4 (3)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 4$	109.9 (3)
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 4$	97.0 (3)
O5-P2-O6	120.0 (3)
O5-P2-O3	109.5 (3)
$\mathrm{O} 6-\mathrm{P} 2-\mathrm{O} 3$	106.4 (3)
O5-P2-O7	104.9 (3)
O6-P2-O7	108.9 (4)
O3-P2-O7	106.4 (3)
O8-P3-O9	116.4 (4)
O8-P3-O7	110.1 (3)
O9-P3-O7	110.9 (4)
O8-P3-O10	107.9 (3)
O9-P3-O10	110.2 (3)
O7-P3-O10	100.1 (3)
$\mathrm{O} 11-\mathrm{P} 4-\mathrm{O} 12$	120.0 (3)
O11-P4-O10 ${ }^{\text {viii }}$	107.0 (3)
$\mathrm{O} 12-\mathrm{P} 4-\mathrm{O} 10^{\text {viii }}$	109.8 (3)
O11-P4-O4	109.3 (3)
O12-P4-O4	107.7 (3)
$\mathrm{O} 10^{\text {viii }} \mathrm{P} 4-\mathrm{O} 4$	101.5 (3)
$\mathrm{P} 1-\mathrm{O} 3-\mathrm{P} 2$	139.3 (4)
$\mathrm{P} 4-\mathrm{O} 4-\mathrm{P} 1$	129.2 (4)
P3-O7-P2	147.4 (4)

supplementary materials

O1—K—O11 vii 108.06 (18) 4 $^{\text {ix }}$ —O10—P3 130.9 (4)
Symmetry codes: (i) $-x+1, y+1 / 2,-z$; (ii) $-x, y+1 / 2,-z$; (iii) $-x, y+1 / 2,-z+1$; (iv) $-x+1, y+1 / 2,-z+1$; (v) $x, y+1, z$; (vi) $x, y, z-1$; (vii) $-x+1, y-1 / 2,-z$; (viii) $x+1, y, z$; (ix) $x-1, y, z$.

Fig. 1

supplementary materials

Fig. 2

Fig. 3

$\begin{array}{r}\mathrm{K} \\ \mathrm{O} \\ \mathrm{P} \\ \mathrm{Y} \\ \hline\end{array}$

